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Abstract 

This paper presents the results of an investigation into 
the usefulness of Karle-Hauptman determinants for the 
solution of the phase problem in small structures. The 
algorithm is discussed in some detail. Results for five 
test structures are given. For all test structures starting 
sets of about 25 reflexions with an acceptable phase 
error of 25 ° or less could be obtained. Various 
attempts to extend these starting sets in order to solve 
the structures are reported. In the writing of the pro- 
gram compatibility with the M U L T A N  system has been 
the authors' intention. 

Introduction 

The basis of most program systems designed to solve 
the phase problem by direct methods is the Y2 relation. 
Various attempts have been made to include higher- 
order phase relations (Gilmore, 1977; Freer & Gil- 
more, 1980). 

In 1977 we decided to try a hitherto neglected 
approach suggested much earlier by Karle & 
Hauptman (1950). These authors discussed various 
properties of Hermitian determinants having structure 
factors as elements. 

Since then, much work has been done to use these 
determinants in large-structure determinations, with 
some considerable success (de Rango, Mauguen & 
Tsoucaris, 1975; de Rango, Mauguen, Tsoucaris, 
Dodson, Dodson & Taylor, 1979). Applications to 
small structures have been rare, which is why we 
decided on a thorough investigation into the applic- 
ability of known theory to the solution of the phase 
problem in intractable small structures. 

In 1978 we published a preliminary report (Vermin 
& de Graaff, 1978). The present paper contains our 
results, together with a description of the methods of 
building the matrix and maximizing the determinants 
we have used. 

Also in 1978 a paper by Taylor, Woolfson & Main 
appeared reporting on their work in this field. We have 
developed algorithms differing significantly from the 
ones given by Taylor et al. Where this seemed relevant 
we have compared results. 

This introduction is followed by a few definitions and 
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a discussion of some relevant properties of Karle- 
Hauptman (henceforth KH) determinants. Next we will 
describe the algorithms necessary to construct and 
maximize the determinant. We conclude by reporting 
the results and the conclusions we have drawn from 
them. The routines described below are available on 
request, in Fortran for IBM and IBM compatible 
systems. A CDC version will be available at a later 
date. The programs cannot be used independently of 
the M U L  T A N  system. 

Karle-Hauptman determinants 

Definitions 

A the KH matrix with elements E(hkl)  
m the order of A 
B theinverse of A 
aij an element ofA ( i , j  = 1, 2 , . . . ,  m) 
ai I the phase of aij ( i , j  = 1, 2 . . . . .  m) 
bi I an element of 13 ( i , j  = 1, 2 . . . .  , m) 
fltj the phase of bij ( i , j  = 1, 2 , . . . ,  m) 
n the number of independent reflexions in A 
a t the ith independent reflexion (i = 1, 2 . . . .  , n) 
b i the element of 13 having the same row and 

column number as a~ 
a~ the phase ofai 
fli the phase of b i 
a a vector of elements a 1, a2, ..., a n 

b avector of elements bl, b E . . . . .  b n 
a a vector of elements a ~ , a 2 ,  . . . , a  n 

a vector of elements ill, f12 . . . .  , fin 
a vector of elements zt 

det A the value of the determinant of A 

We now give a short and necessarily incomplete 
survey of relevant properties of the KH matrices. For 
further details the reader is referred to the literature 
given. 

1. A is Hermitian, i.e. ai i = a* 
. ] l  " 

2. A is positive semi-definite, i.e. all eigenvalues are 
greater than or equal to zero (Goedkoop, 1952). 

3. d e t A > 0 i f m _ < N ,  d e t A = 0 i f m > N ; N i s t h e  
number of atoms in the unit cell (Goedkoop, 1952; 
Kitaigorodsky, 1950). 

4. The maximum determinant rule formulated by 
Tsoucaris (1970). 

© 1982 International Union of Crystallography 
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When a given KH matrix A of order m, containing 
structure factors with known phases, is bordered - to 
obtain a KH matrix A 1 of order m + 1 - by a row and a 
column containing elements, the phases of which are 
unknown, the most probable set of phases in this 
column maximizes det A,/det A. 

This rule has been generalized by Tsoucaris (1970) 
to read that for a given KH matrix A the most probable 
set of phases will maximize det A. Heinermann, Kroon 
& Krabbendam (1979) have been able to prove this 
generalized rule neglecting terms of fifth and higher 
orders. 

5. Main (1975) has published an interesting method 
to optimize the phases in a KH matrix containing 
approximate values for these phases. The essence of the 
method is the maximization of a few of the largest 
eigenvalues of the KH matrix via an iterative pro- 
cedure. Practical tests of this method are discussed 
extensively by Taylor and coworkers (Taylor et al., 
1978). 

6. A simple expression exists for the derivative of det 
A with respect to a given phase: 

8de tA / tga i j=  21atillbijl s i n ( f l i j - a i i ) d e t A .  (1) 

The derivation is given in the Appendix. 

For a KH matrix to be useful in ab initio phase 
determination three criteria have to be met. The matrix 
A must have large off-diagonal elements (to minimize 
det A) to increase the selectivity of the local maxima. 
Similar considerations make it imperative for the 
determinant to contain as few independent reflexions as 
possible. The matrix A may not contain any indepen- 
dent columns or groups of columns. 

The program designed to obtain ab initio phases 
using KH determinants consists of two main blocks: (i) 
the construction of the matrix; (ii) finding a starting 
point and refining the phases until a local maximum is 
obtained. 

Construction of  the matrix 

A general algorithm to construct useful KH matrices in 
an automatic way is not easy to design. We have tried 
the method given by Main (1975). This method was 
used in practice by Taylor and coworkers (Taylor et 
al., 1978). We met with obstacles similar to those met 
by these authors, the main problem being the unsuit- 
ability for extension of the starting sets contained in the 
matrices obtained. Frequently, reflexions belonging to a 
particular parity group did not occur in the matrix at all. 

We have developed an algorithm that approaches the 
problem from a different angle. Instead of building a 
very large matrix and trying to chip the best possible 
block from it, we construct a matrix of the desired 
dimensions immediately. This matrix is then optimized 
iteratively. 

The algorithm consists of the following steps: 
1. A convergence map is produced by the program 

C O N V E R  GE of the M U L  T A N  system. 
2. Each reflexion is assigned a weight Wi = I EI G l 

(i = 1, 2, . . . ,  nc; nc is the number of reflexions in the 
convergence list). 

G i = MAX{ 10,100 exp[ - ( i  - 1) 21n(10)/592] } (2) 

(i = 1, 2 , . . . ,  nc). 
The program C O N V E R G E  attempts to find a path 

in reciprocal space. Following this path, starting from 
the reflexions C O N V E R G E  has identified as critical to 
a continuous phase extension process, F A S T A N  (the 
tangent refinement program of the M U L T A N  system) 
is best able to arrive at a complete phase set. 

By giving the critical reflexions a high weight in the 
matrix optimization, the chance of successful extension 
of the phase set contained in the optimized matrix is 
maximized. G equals 100 for the first reflexion in the 
convergence list, dropping to 10 for i = 60. Therefore, 
the reflexions selected by the convergence procedure as 
suitable choices for inclusion in the starting set get the 
highest weights. All reflexions not in the list are given a 
weight of one. 

3. A top row is constructed, containing the reflex- 
ions with the highest weights. While symmetry- 
dependent reflexions are used as well, due care is taken 
to ensure that all origin-defining and symbolic reflex- 
ions occur at least once in the top row of the matrix. 

4. For each column a figure of merit (Kolfom) is 
calculated (see below). 

5. A combined figure of merit (Matfom) is assigned 
to the matrix: Matfom = (l-IKolfomi) (i = 1, 2 . . . . .  m). 

6. Matfom is now maximized by changing individual 
columns one after the other until convergence (see 
below). 

The figure of merit of column i is given by 

Kolfomi = exp {-(N~ 5/m) 2 }(½)N;, 

x exp (1 - 8P~/X Pi) 2 wk,(3) 
= 0  1 = 0  k = 0  

in which iV./ is the number of reflexions unique to this 
column; N "  is the number of non-observed reflexions 
in the column; Pt equals ~ IEI of all the reflexions 
present in the matrix belonging to parity group ! (ooo = 

...... "m 0, ooe = 1 . . . . .  eee = 7). ~k--, Wk is the sum of the 
weights of the reflexions in the column. 

The first exponential in (3) controls the number of 
independent reflexions in the column, the second 
reaches a maximum if all parity groups are represented 

( 1 ~Ni" evenly in the matrix. The term ~j suppresses 
columns with an unacceptably high number of non- 
observed reflexions. 

An individual column is optimized by permuting the 
reflexions with the highest weights already in the 
column, with their symmetry dependents, over all the 
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positions in the column. The exact number of reflexions 
to be permuted is controlled by the user. For each 
permutation the new top row element is calculated, 
from which the new Kolfom is determined. 

If the new value is greater than the old one, Matfom 
is redetermined. If the new value of Matfom is higher 
than the old one, the new column is accepted and the 
optimization continues with the next column. If not, the 
next permutation is started. 

Should Matfom no longer increase in one complete 
pass through the matrix, then the optimization is 
finished. 

A typical KH matrix of order 20 takes about 1 min 
to construct on an Amdahl V7B. The matrix would 
contain about 80 independent reflexions and 110 
relations. Excluding non-observed reflexions is no 
problem (usually no more than one or two are present). 
In general the reflexions are evenly distributed over the 
parity groups. The starting set of strong E 's  contained 
in the matrix would number about 25. 

D e t e r m i n a t i o n  o f  the p h a s e s  

In order to obtain useful phase information from the 
KH determinants a starting point of the maximization 
process has to be provided. By constructing matrices 
containing the origin-defining and symbolic reflexions 
chosen by C O N V E R G E  we were able to generate 
starting phases for most of the reflexions by applying 
the ~2 relations contained in the matrix. The phases are 
then optimized by one of the two following algorithms. 
Note that in the beginning all the phase sums of the 
three-phase invariants are set at zero. This does not 
imply that on completion of the maximization of the 
determinant all strong triplets have the value zero still. 

The N A G  (1978) subroutine library contains a 
'quasi Newton'  algorithm written to optimize an 
arbitrary function with respect to all the variables, 
when the first-order derivatives are known. The 
program calculates improved estimates of the second- 
order derivatives in each cycle. The number of 
iterations necessary to reach convergence is roughly 
proportional to n, the number of variables. The matrix 
inversion, necessary to obtain O detA/Oa u, is an 
ma-order process, while n is roughly proportional to m. 
The optimizing process using this routine is therefore of 
the order m s . 

The second method, the one we use routinely, is 
rather more empirical in nature. In the maximum 
c~ det A/Oaij ~ 0 or 

l a u l l b i j l s i n ( a u - f l u ) d e t A ~ O  ( i , j = l  . . . .  ,m). (4) 

These partial derivatives cannot be zero exactly 
because symmetry relations exist between various au's. 
(c~ det A/Oa t, i = 1 . . . . .  n, must be exact, for obvious 
reasons.) 

According to Knossow the function 

r(r) = - ~  b u exp[-27ff(h i - hi) r] (i , j  = 1, 2 , . . . ,  m), 
',j 

(5) 

the negative Fourier transform of the elements of the 
inverse of A, contains maxima on the atomic positions 
(Knossow, de Rango, Mauguen, Sarrazin & Tsoucaris, 
1977). The Fourier transform of the matrix elements a u 
has maxima on the same positions, implying for the 
correct phases the relation flu -~ a u + zr. This deduction 
is consistent with (1), albeit only strictly if A contains a 
sufficient number of terms, e.g. in large matrices used in 
protein crystallography. A further condition is, of 
course, that Tsoucaris 's rule holds. 

The foregoing considerations led us to formulate the 
following iterative scheme: %ew = ao~d + Aa with the 
following possibilities: [1] Aa = a -  p + ~; or [2] Aa = 
[3 -- a + ~, resulting in Aa = 0 if ~ - a = it. 

Close to the maximum only [1] is consistent with 
expression (1), giving 

Aa ~_ sin (Aa) = sin ( a  - -  ~ + g) = sin (9  - -  a). (6)  

We calculate the elements of the actual shift vector A% 
from 

Aa i = (Aa; + SS;)  F i (7) 

in which 

and 

Aa" = ,oi{(a i --/)t + zO, mod 2zr} (8) 

I ~  sin(Spo flpo- ~0p.) 

/)t = tan-I  (9) 

Aa" is the shift given by [1] averaged over the N 
symmetry equivalents and the variable a, itself. Spq and 
~%q describe the symmetry relation between parameter i 
and one symmetry equivalent, element p, q of the 
matrix, co, is a weight given by 

co, sin{(/), a, ) ,mod 2zd2} ~ Spqbpq~'~,l/Y = -- I bpql. 
i II, 

(10) 

The effect of o9, is to tone down large shifts as well as to 
account for the consistency of the indications for 
symmetry-related reflexions. S[ is the sign of c~ det A/ 
Oa i, calculated from (1). S is given by zN/=I IAa[I/n. 
Should S[ and Acq of a given parameter i have a 
different sign, then Act/ is set to zero. F, is a 'fudge 
factor'; it is multiplied by ~ if the sign of the shift is the 
same from one cycle to the next, if not F, is divided by 
2. The starting values are 0.3. If, during maximization, 
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the value det A decreases, all values of F i are divided by 
2, and the determinant is recalculated, this is repeated if 
necessary. 

This rather complicated and, admittedly, artificial 
scheme converges to essentially the same points in 
parameter space as the Newton method. However, the 
number of iterations required is a very weak function of 
the number of parameters, i.e. the order of the process 
is m 3 to m 4, a very significant improvement on the quasi 
Newton method. 

Both methods suffer from the same handicap, 
namely that special reflexions cannot change their 
phases gradually. In P2~ structures a separate treat- 
ment proved to be unnecessary, hOl reflexions arrived 
on or very near to their allowed values (0 or zr). In 
P2~2~2~ a separate treatment of the special reflexions 
was essential. If during two consecutive cycles a shift of 
more than zr/3 was calculated for a given special 
reflexion, zr was added to the phase. 

maximum determinant rule is not valid for deter- 
minants of order N/2  or larger (N is the number of 
atoms in the unit cell) (Heinermann et al., 1979). 

Therefore, the procedure outlined in the previous 
sections cannot be applied to a determinant containing 
sufficient information to define the structure in the case 
of structures with N < 150. To circumvent this problem 
we have provided the option of maximizing several 
determinants concurrently. The construction procedure 
strongly links the matrices to avoid the possibility of 
the maximizing producing phase sets related to dif- 
ferent origin settings in different determinants. 

An example of this technique, which is essentially a 
phase extension procedure, is discussed in the section 
on test structures. The implementation of this option 
provides the user with an opportunity to develop 
sufficiently large phase sets to obtain structural 
information directly, bypassing the tangent refinement. 

Recognizing the best set of phases 

In the foregoing sections a procedure is outlined which 
will supply the user with a number of phase sets 
(dependent on the number of permutations generated 
by M U L T A N ) .  These phase sets can then be used as 
starting points for phase extension. 

We have attempted to find a suitable figure of merit, 
enabling us to discriminate between the sets generated. 
Obvious choices are the value of the determinant and a 
measure of the way in which the relation flit - a i i  = zr 
holds. 

A less obvious but possibly better choice is a 
criterion not directly related to the target function. 
Considering the theory given by Main (see 
Introduction), the highest eigenvalue of A might be 
such a criterion. Furthermore we have tested various 
criteria derived from the paper by Navaza & da Silva 
(1979). 

Regrettably none of these possibilities provided us 
with a figure of merit discriminating between the 
various sets obtained from smaller matrices of order 20 
or thereabouts. This is in accordance with the con- 
clusions of Baggio & Woolfson (1978) that it is 
impossible to define a useful figure of merit for a small 
(20 to 30) set of high E values, even if a similar number 
of weak reflexions is also known. 

However, in the one example we have of a partially 
successful phase extension using KH matrices alone, 
we found the product of the determinant value and the 
highest eigenvalue to be a good figure of merit. 

Test structures 

We have tested the program based on the procedures 
given in the previous sections by trying to solve the 
phase problem for five test structures. All of these 
structures were not, or were only partially, solved by 
M U L  T A N  78. 

We tried to solve the structures automatically, that is 
using the default options of the M U L T A N  system as 
input to the determinant program. A 20 × 20 matrix 
was then constructed using default values again to 
control the construction procedure. The starting sets of 
phases obtained from the maximizing routine were fed 
into F A S T A N ,  and the map of the final solution with 
the highest combined figure of merit (FOM) was 
calculated. 

Only if this map or any other maps calculated from 
this set of solutions was not interpretable did we use 
our familiarity with the program to produce different, 
larger or possibly better matrices, different phase 
permutations, etc. The interpretation of the maps was 
done 'fairly', i.e. known atomic coordinates were not 
used and peaks were treated in descending order of 
strength. In order to verify if the inclusion of the KH 
step into the system was indeed a useful one we also 
attempted to solve the structures with M U L T A N  
directly. 

The first test structure was also used for a few 
experiments involving phases calculated from the 
known structure. 

The multi matrix method 

Working on not very large structures imposes severe 
restrictions on the size of the determinants as the 

The compounds 

1. PYROC: C35H46N20 6 (de Kok 
1975), 10a-ergosta-5,7,22-trien-3 fl-yl 

& Romers, 
3',5'-dinitro- 
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benzoate, N = 86, space group P21, Z = 2, a = 11.28, 
b =  11.27, c =  12.537A, f l = 9 3 . 2 5  °. 

N O 2 ~  C \O 

NO2 
2. ISOPYR: C35H46N206 (de Kok, Romers & 

Hoogendorp, 1975), 9 fl-ergosta-5,7,22-trien-3 fl-yl 
3',5'-dinitrobenzoate, N = 86, space group P21, Z = 2, 
a = 18.364, b = 5.955, c = 14.568 A,/~ = 94.03 °. 

N O 2 ~ C \ o  

NO 2 
3. TOX" C34H46N206 (de Kok, Boomsma & 

Romers, 1976), 6,10-cyclo-5a-methyl- 19-norcholest-7- 
en-2a-yl 3',5'-dinitrobenzoate, N = 84, space group 
P2 l, Z = 2, a = 8.912, b = 7.3136, c = 24.889 A, f l =  
98.93 ° . 

NO2 CH 3 

NO2 

CH3 
4. TRIGAL: C40H56025 (Hoogendorp & Romers, 

1982), methyl 3,4-O-isopropylidene-2,6-di-O-(2,3,4,6- 
tetra-O-acetyl-p-D-galactopyranosyl)-a-D-galacto- 
pyranoside, N = 124, space group P2~, Z = 2, a = 
12.480, b = 8.821, e = 21.18 A, fl = 98.46 °. 

AcO O-~--- </-OAc 

AcO" OAc 
5. GLUCOPYR:  C20H22N2014 (Koeners, de Kok, 

Romers and van Boom, 1980), 2',4'-dinitrophenyl 
2,3,4,6-tetra-O-acetyl-a-D-glucopyranoside, n = 144, 
space group P2x2~21, Z = 4, a = 8.16, b = 17.05, c = 
17.05 A. 

NO 2 

N~)2~AcO / "]/ ~'OAc 
OAc 

Results 

PYROC 

Using the available structural information (the shape 
of the dinitrobenzoic group is known), phasing 500 
reflexions with M U L T A N  78 resulted in a partial 
solution. In the best map about half the structure could 
be located. 

Following the automatic procedure sketched above, 
three sets of 20 strong reflexions with an average phase 
error of less than 25 ° were obtained. Phase extension 
using FASTAN with defaults and calculating the E 
map of the solution with the highest combined figure of 
merit resulted in a map showing 41 out of 43 atoms. 
The 272 highest E 's  were used, the highest peak not 
corresponding to an atom was number 41. 

We also tried maximizing the same determinant with 
the phases calculated from the actual structure as 
starting point. The phase error on convergence was 
17 ° , phase extension again proceeded smoothly. 
Optimizing the largest eigenvalue using the iterative 
procedure given by Main (1975), again starting with 
the calculated phases, resulted in a significantly larger 
deviation from the true values, 30 ° . Also in later stages 
of this optimizing process the value of the determinant 
decreased. It is probably necessary to use more than 
one eigenvalue to obtain satisfactory results. [See 
Taylor et al. (1978) for further illustrations of this 
procedure.] 

ISOPYR 

As in the case of PYROC using M U L T A N  78 yields 
no more than a partial solution, which in this case was 
shifted over 1 A with respect to the screw axis. 

A run using default options of the MUL TAN system 
and starting sets of 26 reflexions obtained from a 20 x 
20 KH matrix produced a map containing a fragment 
of 32 atoms not shifted with respect to the symmetry 
element. The corresponding phase set (which had the 
highest combined figure of merit) was obtained by 
extending a starting set with an average error of 45 ° 
Extension of phase sets with a smaller error (28 °) 
yielded smaller fragments of the structure. 

TOX 

M U L T A N  78 does not solve the phase problem, not 
even partially. An automatic run of M U L T A N  com- 
bined with the determinant program produced a map 
from which the ester group could be recognized. The 20 
x 20 KH matrix contained 29 strong reflexions. After 
the maximizing procedure there were 12 sets with an 
average phase error of less than 35 ° , two of which had 
an error of 25 o. Clearly the phase extension by tangent 
refinement was not very successful. However, the best 
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map coincided with the l~ighest combined figure of 
merit. 

TRIGAL 

The structure could not be determined using the 
M U L T A N  system. Maximizing a 20 x 20 KH 
determinant containing 23 strong E's resulted in a 
starting set with an average phase error of 22 ° . Phase 
extension of this and other sets did not result in 
interpretable E maps. 

Using an order 30 x 30 matrix 29 strong reflexions 
could be phased with an average error of 28 ° . Again 
extension by tangent refinement was not successful. 
The phases obtained from this matrix were used as 
input in the concurrent optimization of ten 15 x 15 
determinants. Calculating the Fourier transform of the 
192 unique reflexions contained in these matrices 
produced a map containing a recognizable fragment of 
the structure. The figure of merit described earlier 
proved to be useful: the phase set giving the fragment 
was second in the list. 

It is noteworthy that calculating the Fourier trans- 
form of the 192 reflexions using correct phases gave the 
same fragment and no more. 

Our experiments with theoretical phases in the case 
of PYROC seem to indicate that optimizing the highest 
eigenvalue of the matrix does not converge to the same 
point in parameter space as the two other methods we 
have tested. Moreover, convergence is less rapid than 
in the case of the empirical iterative scheme. Therefore 
if one wishes to use the maximum-determinant rule to 
obtain ab initio phases we think our method is of more 
general use. 

The computer time required to set up and maximize 
a determinant large enough to produce a suitable 
starting set for F A S T A N  is of the same order as a 
conventional M U L  T A N  run. 

The authors are indebted to Professor C. Romers for 
his unflagging interest in this project. The algorithms 
described were developed and tested on the CDC 
computer of the ECN in Petten. The calculations on the 
test structures were done on the Amdahl V7 computer 
of the computing centre of Leyden State University, 
CRI. 

APPENDIX 

GLUCOPYR 

This structure has up to now resisted all attempts to 
solve the phase problem by direct methods. Using KH 
matrices, starting sets with a small phase error could be 
obtained. The best of these had an average phase error 
of 20 ° in 20 strong reflexions. However, extension 
proved to be impossible with both the tangent refine- 
ment and the multi matrix approach. 

We have looked into the correct phase values of the 
three-phase invariants. Many strong triplets have 
phases differing greatly from zero. Interestingly this 
does not interfere unduly with our attempts to produce 
starting sets. The solution quoted reproduced several of 
these invariants fairly well. 

Conclusions 

Four out of five of the 'problem structures' we have 
tested could be solved using a combination of 
M U L T A N  78 and the procedure given in this paper. In 
one case phase extension via the multi matrix method 
gave a useful result not obtainable using the tangent 
refnement as carried out in the M U L T A N  program. 
The conclusion must be that a program such as ours 
can be a useful addition to t h e ~ I U L T A N  package. 

With regard to the various possibilities of maxi- 
mizing the determinant, we-~would like to make the 
following comments. 

Definitions 

C a complex matrix 
m the order of C 
c e an element of C ( i , j  = 1, 2 , . . . ,  rn) 
F the inverse of C 

fo  an element of F 
71j the phase of ctj ( i , j  = 1, 2 , . . . ,  m) 
~Plj the phase ofJ~j ( i , j  = 1, 2 , . . . ,  m) 
A the determinant of C 
A~j the determinant of the matrix obtained from C 

by deleting row i and column j 

Derivation o f  expression (1)for  ~ det A/c~% 

Expanding along row k we obtain 

A = ~ ( - l )  k+y Ckj Akj + (--l) k+l CklAkl" (A 1) 
j =  I,j:P l 

Differentiation with respect to ckt gives 

tgA/tgCkt = --I k+t Akl. (A 2) 

Application of Cramers' rule gives 

cgA / cgc kl = f tkA , (A3) 

~Ckl = iCkl (9(Okl. (A4) 

Combining (A 3) and (A4) gives 

~A/Cg~Okl = ick: ftk A. (A 5) 
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Applying this to the Hermitian matrix A, 

CO det A/coakl = iakt blk det A - ialk bkl det A, (A 6) 

which after some simplification becomes 

cO det A/cOakl = 21ak/I Ibktl sin(flk/--aul ) det A. (A7) 
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Abstract 

Structural work on the three modifications of sodium 
hydroxide is reviewed. The monoclinic and cubic 
modifications were determined with neutron and X-ray 
diffraction, respectively. The phase-transition tem- 
peratures were determined by specific-heat measure- 
ments. The cubic to monoclinic transition is a first- 
order transition with a freezing of the rotational motion 
of the OH (and OD) groups. The monoclinic axes a, b 
and c* tend to be oriented parallel to the original cubic 
directions [122], [ 1 [0] and [ 111], respectively. The 
orthorhombic to monoclinic transition is a nearly 
continuous displacive phase transition with a soft 
acoustic shear mode. The order parameter is the 
homogeneous shear of the crystal in the a direction. Its 
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temperature dependence is described within Landau 
theory. 

1. Introduction 

The low-temperature orthorhombic modification of 
NaOH was determined by Ernst (1946) with some 
speculations on the position of the hydrogen atom. 
Stehr (1967) determined the H positions with neutron 
scattering and found a monoclinic modification P21/m 
at higher temperatures. Bleif (1971) found from 
specific-heat measurements and X-ray diffraction 
patterns that there are three different modifications as a 
function of temperature, the high-temperature phase 
being cubic Fm3m, as suggested by West (1935). The 
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